The Poisson Inverse Gaussian (PIG) Generalized Linear Regression Model for Analyzing Motor Vehicle Crash Data

نویسندگان

  • Liteng Zha
  • Dominique Lord
  • Yajie Zou
چکیده

This paper documents the application of the Poisson Inverse Gaussian (PIG) regression model for modeling motor vehicle crash data. The PIG distribution, which mixes the Poisson distribution and Inverse Gaussian distribution, has the potential for modeling highly dispersed count data due to the flexibility of Inverse Gaussian distribution. The objectives of this paper were to evaluate the application of PIG regression model for analyzing motor vehicle crash data and compare the results with Negative binomial (NB) model, especially when varying dispersion parameter is introduced. To accomplish the objectives, both NB and PIG models were developed with fixed and varying dispersion parameters and compared using two datasets. The Texas undivided rural highway segments dataset includes five years of crash data, while the divided highway segments Washington dataset includes four years. The results of this study show that PIG models perform better than the NB models in terms of goodness-of-fit (GOF) statistics. Moreover, PIG models can perform similarly well in capturing the variance of crash to the NB models. Lastly, PIG models demonstrate almost the same prediction performance compared to NB models. Considering the simple form of PIG model and its easiness of applications, PIG model could be used as a potential alternative to the NB model for analyzing crash data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Poisson-Weibull Generalized Linear Model for Analyzing Motor Vehicle Crash Data

Over the last 20 to 30 years, there has been a significant amount of tools and statistical methods that have been proposed for analyzing crash data. Yet, the Poisson-gamma (PG) is still the most commonly used and widely acceptable model. This paper documents the application of the Poisson-Weibull (PW) generalized linear model (GLM) for modeling motor vehicle crashes. The objectives of this stud...

متن کامل

Estimating Pedestrian Volumes and Crashes at Urban Signalized Intersections

Crash prediction models are used to estimate the number of crashes using a set of explanatory variables. The highway safety community has used modeling techniques to predict vehicle-to-vehicle crashes for decades. Specifically, generalized linear models (GLMs) are commonly used because they can model non-linear count data such as motor vehicle crashes. Regression models such as the Poisson, Zer...

متن کامل

Application of the Conway-Maxwell-Poisson generalized linear model for analyzing motor vehicle crashes.

This paper documents the application of the Conway-Maxwell-Poisson (COM-Poisson) generalized linear model (GLM) for modeling motor vehicle crashes. The COM-Poisson distribution, originally developed in 1962, has recently been re-introduced by statisticians for analyzing count data subjected to over- and under-dispersion. This innovative distribution is an extension of the Poisson distribution. ...

متن کامل

Single-Vehicle Run-Off-Road Crash Prediction Model Associated with Pavement Characteristics

This study aims to evaluate the impact of pavement physical characteristics on the frequency of single-vehicle run-off-road (ROR) crashes in two-lane separated rural highways. In order to achieve this goal and to introduce the most accurate crash prediction model (CPM), authors have tried to develop generalized linear models, including the Poisson regression (PR), negative binomial regression (...

متن کامل

Characterizing the Performance of the Bayesian Conway-maxwell Poisson Generalized Linear Model

This paper documents the performance of a Bayesian Conway-Maxwell-Poisson (COM-Poisson) generalized linear model (GLM). This distribution was originally developed as an extension of the Poisson distribution in 1962 and has a unique characteristic, in that it can handle both under-dispersed and over-dispersed count data. Previous work by the authors lead to the development of a dual-link GLM bas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014